

Daily Tutorial Sheet-14	Level-3

- **151.(AD) (A)** Due to smaller size of O, gain in e⁻ causes e⁻ e⁻ repulsion hence instability
 - **(B)** $Z_{eff} B > Z_{eff} Al$
 - (C) Incorrect \rightarrow Mg is more stable due to its fully filled s-orbital (3s²) as compared to Na(3s¹)
 - (D) Last e^- in case of N enters in $2p^3$ orbital, hence it is more close to nucleus therefore more stable than $P(3p^3)$
- 152.(AC) (A) Covalent radius leads to overlapping which is not in case of Vander Waal's radius
 - **(B)** Incorrect \rightarrow It is not true,

Ex. : F^- and Mg^{2+} in which F (2nd period), Mg (3rd period).

- (C) In LE_1e^- is removed from half-filled in case of N and after removing i.e., oxygen becomes O⁺ (half filled) so it is more stable and hence more I.E.
- **(D)** E.A of Cl > E.A of F (smaller size of F causes $e^- e^-$ repulsion)
- $\textbf{153.(CD) (A)} \qquad \text{For isoelectronic species, } \left(\text{size} \propto \frac{1}{Z_{eff}} \right) \quad \textbf{(B)} \qquad \text{Ge > As > Se > Br : Metallic character}$
 - (C) Si > Mg > Al > Na: Ionisation energy (D) Cl > F > Br > I: Electron affinity
- **154.(ABC) (A)** The radius of isoelectronic species $\propto \frac{1}{\left(\frac{Z}{e}\right) \text{ ratio}}$ and along the period, size decreases
 - **(B)** Ionisation energy $\propto \frac{1}{\text{size}} \propto \text{ Effective nuclear charge}$
 - (C) Cl > F > Br > I: Electron affinity
- **(D)** Zeff of $Al^{3+} > Al^{2+} > Al^+ > Al$
- **155.(B)** $Cl^+(g) + e^- \longrightarrow Cl(g)$ (E.A. of Cl^+)

 $Cl(g) + e^{-} \longrightarrow Cl^{-}(g)$ (E.A. of Cl)

 $Cl^{-}(g) \longrightarrow Cl^{+}(g) + 2e^{-}(IE_1 + IE_2 \text{ of } Cl^{-}) \text{ or } IE_1 \text{ of } Cl + (-E.A. \text{ of } Cl)$

156.(0) All the cations have higher I.E. than corresponding atom.